
Using Inter-Portlet Communication with IBM WebSphere
Portlet Factory

June, 2007

© Copyright International Business Machines Corporation 2006, 2007. All rights
reserved.

This article with the accompanying sample shows you how to use IBM® WebSphere®
Portlet Factory Version 6 (hereafter called Portlet Factory) to implement inter-portlet
communication including Click-to-Action, Property Broker, Portlet Factory events, and
shared variables.

This article is one in a collection of articles and samples that illustrate techniques for
developing with Portlet Factory. See the Portlet Factory Product Documentation page
for a complete list of these. For an introduction to developing with Portlet Factory, you
may want to look at the introductory tutorials that are available both in the product help
and on that web site.

Prerequisites
You should have a basic familiarity with Portlet Factory and be able to create and run
Portlet Factory portlets in WebSphere Portal.

Introduction to inter-portlet communication
There are three general types of inter-portlet communication supported by Portlet Factory
builders:
1. Portlet Factory events. These events are a simple way to implement inter-model

communication, both in Portal and when running standalone. These events work in
both IBM Portlet API mode and Standard portlet API mode. When an event is fired,
it is broadcast to all models in the same user session, and any models that are
listening for the event will have their event handler called. Events can have any
number of arguments, of simple or complex types. These events are fired explicitly
and don’t have any user interface of their own. In the sample, the events are fired
when a link is clicked in a column of the table. The builders used for Portlet Factory
events are Event Declaration and Event Handler.

2. Cooperative Portlet events: Click-to-Action and Property Broker. These are
mechanisms defined by WebSphere Portal for inter-portlet communication, and these
mechanisms are only available when running in Portal. Click-to-Action is a Portal
mechanism that uses drop-down menus to control portlet interaction, and is available
only when running a project in IBM Portlet mode. In Standard portlet mode,
Cooperative Portlets must be configured using the “Wires” tool described below.
The builders used for Cooperative Portlet events are Cooperative Portlet Source,
Cooperative Portlet Target, and Event Handler.

 - 1 -

http://www-128.ibm.com/developerworks/websphere/zones/portal/portletfactory/proddoc.html

3. Shared variables. This is a Portlet Factory feature that lets you share a variable
across all the models in a user session. This feature works both in Portal (either
portlet mode) and when running standalone. The models do not have to be on the
same portal page. The builder used for this is Shared Variable. This feature is often
coupled with one of the event mechanisms above, so that a when portlet modifies a
shared variable it can notify other portlets that a value has changed.

There are four types of inter-portlet events available in Portlet Factory: Click-to-Action,
Property Broker Link, Property Broker Action, and Portlet Factory events. The key
differences between these event types are summarized in the table below. There are also
differences in behavior depending on whether portlets are using IBM Portlet mode or
Standard mode (JSR 168).

Table 1. Summary of key features of the four event mechanisms
 Click-to-

Action
Property
Broker Link

Property
Broker Action

Portlet Factory
Events

Platform
support

Portal only,
IBM Portlet
mode only*

Portal only
(either mode)

Portal only
(either mode)

Portal (either
mode) and
standalone
J2EE supported

User interface C2A drop-down
menu

Link in
Standard portlet
mode; C2A
drop-down
menu in IBM
Portlet mode

No UI (event
must be
explicitly fired
by application)

No UI (event
must be
explicitly fired
by application)

Arguments
supported

Simple
argument value

Simple
argument value

Simple
argument value

Multiple
complex
argument types

Event
Configuration

No wiring
required –
matches event
names and
types

Requires
explicit Portlet
Wiring in
Standard portlet
mode

Requires
explicit Portlet
Wiring in
Standard portlet
mode

No wiring
required – event
broadcast using
the event name

* Note: Click-to-Action menus are displayed only in IBM Portlet mode, but the same
models can be configured with Portlet Wiring in Standard portlet mode and will display a
simple link UI instead of a drop-down menu.

Sample description
Here are some of the techniques illustrated in the sample code.

Click-to-Action and Property Broker events. For both of these event types, the source
models uses the Cooperative Portlet Source builder, and the target model uses
Cooperative Portlet Target. The ORDER_ID from the source table is used as the argument
to pass to the target model. In the target model, the Event Handler builder is used to

 - 2 -

save the ORDER_ID value into a variable and then call the method that updates and
displays the details data. For the Click-to-Action portlets, the Output Name and Output
Type inputs in the source model must match the Input Name and Input Type Name
builder inputs in the target model.

Portlet Factory events. The GetOrderDetails event is defined in a common base
model called OrdersEventDeclarationBase. This event has one argument which is the
ORDER_ID. The source model has an Action List called selectRowFireEvent that fires
the event, using the ORDER_ID value from the SelectedRowData variable. The target
model has an Event Handler builder that listens for the event.

Using shared variables. The SharedVariableDateFilter and
SharedVariableOrderList use two shared variables that are defined in the
SharedVariableBase model. The variables are set when you change a date in the
SharedVariableDateFilter model. In the SharedVariableOrderList model, the
variables are used to filter the list of orders. This is done every time the page is
rendered, using an OnPageLoad event handler. Another technique commonly used is to
explicitly fire an event whenever a shared variable value changes.

Using Model Container as a simple container for standalone testing of events and
shared variables. For inter-portlet communication that doesn’t use Portal-specific
functionality such as Cooperative Portlets, it may be convenient to create a simple
container model, then use the Model Container builder to place models on the same
container page for testing. See the OrdersContainmentViewer and
SharedVariableContainmentViewer models for examples of this technique.

Using View & Form builder for a details page. For the portlets that show a details
page (responding to an event that determines which data to display), the details page is
created with a View & Form builder. Since the operation selected for viewing returns a
single record as opposed to a repeating table, the page is automatically generated to
display a single record. These details models have a special page which is initially
displayed that tells the user to click an item to see the data. The main method, which is
usually generated by the View & Form builder, is disabled in the Advanced section of
that builder.

 - 3 -

Figure 1. This screen capture shows the running Property Broker sample page in
Standard portlet mode

 - 4 -

Figure 2. This screen capture shows the Click-to-Action portlets running in Portal using
IBM Portlet mode

Table 1. Sample package contents
Filename and location Description
WEB-INF/models/samples/
portlet_communication/OrdersSelect.model

Source portlet for Portlet Factory
event sample.

WEB-INF/models/samples/
portlet_communication/OrdersView.model

Target portlet for Portlet Factory
event sample.

WEB-INF/models/samples/
portlet_communication/
OrdersContainmentViewer.model

Container model for the previous
two models, for standalone testing.

WEB-INF/models/samples/
portlet_communication/
C2AOrdersListSource.model

Source portlet for Click-to-Action
sample.

WEB-INF/models/samples/
portlet_communication/
C2AOrdersListTarget.model

Target portlet for Click-to-Action
sample.

 - 5 -

WEB-INF/models/samples/
portlet_communication/
PBActionOrdersSource.model

Source portlet using “Property
Broker Action” type for Property
Broker sample.

WEB-INF/models/samples/
portlet_communication/
PBOrdersListSource.model

Source portlet for Property Broker
sample.

WEB-INF/models/samples/
portlet_communication/
PBOrdersListTarget.model

Target portlet for Property Broker
sample.

WEB-INF/models/samples/
portlet_communication/
SharedVariableDateFilter.model

Part of the shared variable sample.
This model has a page for setting
start and end dates used to filter
data in the following model.

WEB-INF/models/samples/
portlet_communication/
SharedVariableOrderList.model

List of orders which is filtered
using a shared variable value.

WEB-INF/models/samples/
portlet_communication/
SharedVariableContainmentViewer.model

Container model for the previous
two models, for standalone testing.

WEB-INF/models/samples/
BaseModels/
OrdersEventDeclarationBase.model

Event declaration that is used by
both OrdersSelect and OrdersView
models.

WEB-INF/models/samples/
BaseModels/
SharedVariableBase.model

Definition of the shared variable
that is used by both
SharedVariableDateFilter and
SharedVariableOrderList models.

WEB-INF/models/samples/
data/OrdersServiceProvider.model

Service provider model used with
the shared variable sample.

Instructions for running the sample
Note: There can be an issue with path names that exceed the Windows limit when
deploying Cooperative Portlets in Portal. For this reason, you may want to look at the
workaround below in the Troubleshooting section, and create a new project that has the
workaround in place before you begin.

To run the sample application:

1. Download the sample ZIP file and import it into a project using the File,
Import, WebSphere Portlet Factory Archive command. The project must
have the Tutorials and Samples / Applications feature set installed and it
must be enabled for portlet creation. The features and functionality are slightly
different between Java Standard and WebSphere Portal Native portlets, as noted
below.

2. Test the shared variable sample models and the event sample models in a
standalone mode. For events, open the OrdersContainmentViewer model and
run it. Click on one of the order ID’s in the top model to see the order details in
the bottom model. For shared variable, open the
SharedVariableContainmentViewer model and run it. Try selecting a different

 - 6 -

start date such as June 1, 2001. Notice that the list of orders is filtered using
the shared variable data.

3. Update the portlet WAR to make the portlet models available in Portal. To do
this, right-click on the project and select Rebuild WAR / Rebuild Portlet
WAR. If you do not have auto-deploy enabled for portlets in your project, you will
need to manually update the portlet WAR using the Portal’s Administration tools.

4. Create portal pages for the test portlets and place the portlets on them. Create
pages similar to the following, with two/three portlets on each page as shown:
Page Portlets
Portlet Factory Event Sample Sample Orders Select

Sample Orders View
Property Broker Sample Sample PBOrders List Source

Sample PB Action Orders List Source
Sample PBOrders List Target

Click to Action Sample Sample C2A Orders List Source
Sample C2A Orders List Target

Shared Variable Sample Sample SharedVariable Date Filter
Sample SharedVariable Orders List

5. View the Portlet Factory Event Sample page. Click on an Order ID in the list
portlet to see the order details in the second portlet.

6. View the Shared Variable Sample page. Try selecting a different start date such
as June 1, 2001, and notice that the second portlet updates to reflect the change.

7. If you are running WebSphere Portal Native mode, view the Click to Action
Sample page, and click an Order ID to see the order details in the other portlet.

8. If you are using Java Standard mode, in order to run the Property Broker or Click-
to-Action samples you will need to use the Portlet Wiring tool to connect the two
portlets.

a. Go to Edit Page Layout for the page and click on the Wires tab at the top.
b. Select the following values:

Input Selection
Source portlet Sample PBOrders List Source, Sample PB Action

Orders List Source, or Sample C2A Orders List Source
Sending Order ID

Target Page (leave at default value for this page)
Target Portlet Sample PBOrders List Target or Sample C2A Orders

List Target
Receiving Target1 Action Order ID, Order List Order ID

c. Important: Click the “plus” sign on the right to add this wiring.
d. Click Done.

9. View the Property Broker Sample page and select an Order ID to see the order
details in the other portlet.

 - 7 -

Troubleshooting
Working around the “Path too long” error
There can be an issue with path names that exceed the Windows limit when deploying
Cooperative Portlets in Portal. The issue arises with the WSDL files that are generated
when you use Click-to-Action or Portlet Wiring. You can follow the steps here to make
projects that have a somewhat shorter deployed folder location. After making this
change, any new projects you create will have the shortened folder location, making them
less likely to have the problem with long pathnames.

1. Locate this folder in your Portlet Factory installation folder:
WPFDesigner\FeatureSets\Web-App_<version>\
Templates\Project\wpf.war\WEB-INF\bin\deployment

2. Open these two files under that folder for editing:
\jsr168\web.xml
\wp\web.xml

3. In both files, change this line:
<display-name>WebAppRunner Portlet Application</display-name>
to this:
<display-name>WPF</display-name>

4. Save the files.
5. Create a new project, with the Tutorials and Samples / Applications

feature set.
6. Continue with the steps above to install and run the samples.

Resources
WebSphere Portlet Factory product documentation
http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory/proddoc.html

WebSphere Portlet Factory support
http://www.ibm.com/software/genservers/portletfactory/support/

developerWorks forums
http://www.ibm.com/developerworks/forums/wsdd_forums.jsp

Trademarks
• DB2, IBM, Lotus, Tivoli, Rational, and WebSphere are trademarks or registered

trademarks of IBM Corporation in the United States, other countries, or both.
• Windows and Windows NT are registered trademarks of Microsoft Corporation in the

United States, other countries, or both.
• Java and all Java-based trademarks and logos are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States, other countries, or both.
• Other company, product, and service names may be trademarks or service marks of

others.

 - 8 -

http://www.ibm.com/developerworks/websphere/zones/portal/portletfactory/proddoc.html
http://www.ibm.com/software/genservers/portletfactory/support/
http://www.ibm.com/developerworks/forums/wsdd_forums.jsp

	Using Inter-Portlet Communication with IBM WebSphere Portlet Factory
	June, 2007
	© Copyright International Business Machines Corporation 2006, 2007. All rights reserved.
	This article with the accompanying sample shows you how to use IBM(WebSphere(Portlet Factory Version 6 (hereafter called Portlet Factory) to implement inter-portlet communication including Click-to-Action, Property Broker, Portlet Factory events, and shared variables.
	This article is one in a collection of articles and samples that illustrate techniques for developing with Portlet Factory. See the Portlet Factory Product Documentation page for a complete list of these. For an introduction to developing with Portlet Factory, you may want to look at the introductory tutorials that are available both in the product help and on that web site.
	Prerequisites
	You should have a basic familiarity with Portlet Factory and be able to create and run Portlet Factory portlets in WebSphere Portal.
	Introduction to inter-portlet communication
	There are three general types of inter-portlet communication supported by Portlet Factory builders:
	1. Portlet Factory events. These events are a simple way to implement inter-model communication, both in Portal and when running standalone. These events work in both IBM Portlet API mode and Standard portlet API mode. When an event is fired, it is broadcast to all models in the same user session, and any models that are listening for the event will have their event handler called. Events can have any number of arguments, of simple or complex types. These events are fired explicitly and don’t have any user interface of their own. In the sample, the events are fired when a link is clicked in a column of the table. The builders used for Portlet Factory events are Event Declaration and Event Handler.
	2. Cooperative Portlet events: Click-to-Action and Property Broker. These are mechanisms defined by WebSphere Portal for inter-portlet communication, and these mechanisms are only available when running in Portal. Click-to-Action is a Portal mechanism that uses drop-down menus to control portlet interaction, and is available only when running a project in IBM Portlet mode. In Standard portlet mode, Cooperative Portlets must be configured using the “Wires” tool described below. The builders used for Cooperative Portlet events are Cooperative Portlet Source, Cooperative Portlet Target, and Event Handler.
	3. Shared variables. This is a Portlet Factory feature that lets you share a variable across all the models in a user session. This feature works both in Portal (either portlet mode) and when running standalone. The models do not have to be on the same portal page. The builder used for this is Shared Variable. This feature is often coupled with one of the event mechanisms above, so that a when portlet modifies a shared variable it can notify other portlets that a value has changed.
	There are four types of inter-portlet events available in Portlet Factory: Click-to-Action, Property Broker Link, Property Broker Action, and Portlet Factory events. The key differences between these event types are summarized in the table below. There are also differences in behavior depending on whether portlets are using IBM Portlet mode or Standard mode (JSR 168).
	Table 1. Summary of key features of the four event mechanisms
	Sample description
	Instructions for running the sample
	Troubleshooting
	Working around the “Path too long” error

	Resources

